numpy resize 和 reshape 区别
在 numpy 中,resize 是用来改变数组的元素个数,而 reshap 不改变元素个数,只是改变维度,比如说从一维变成二维。
import numpy as np
X=np.array([[1,2,3,4],
[5,6,7,8],
[9,10,11,12]])
X_new=np.resize(X,(3,3)) # do not change the original X
print("X:\n",X) #original X
print("X_new:\n",X_new) # new X
>>
X:
[[ 1 2 3 4]
[ 5 6 7 8]
[ 9 10 11 12]]
X_new:
[[1 2 3]
[4 5 6]
[7 8 9]]
import numpy as np
X=np.array([1,2,3,4,5,6,7,8])
X_2=X.reshape((2,4)) #retuen a 2*4 2-dim array
X_3=X.reshape((2,2,2)) # retuen a 2*2*2 3-dim array
print("X:\n",X)
print("X_2:\n",X_2)
print("X_3:\n",X_3)
>>
X:
[1 2 3 4 5 6 7 8]
X_2:
[[1 2 3 4]
[5 6 7 8]]
X_3:
[[[1 2]
[3 4]]
[[5 6]
[7 8]]]
参考:
https://blog.csdn.net/qq_24193303/article/details/80965274
https://blog.csdn.net/DocStorm/article/details/58593682